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Abstract

This paper presents a new technique for developing reduced-order models (ROMs) for non-
linear radiative transfer problems in high-energy density physics. The proper orthogonal
decomposition (POD) of photon intensities is applied to obtain global basis functions for the
Galerkin projection (POD-Galerkin) of the time-dependent multigroup Boltzmann transport
equation (BTE) for photons. The POD-Galerkin solution of the BTE is used to determine
the quasidiffusion (Eddington) factors that yield closures for the nonlinear system of (i)
multilevel low-order quasidiffusion (VEF) equations and (ii) material energy balance equa-
tion. Numerical results are presented to demonstrate accuracy of the ROMs obtained with
different low-rank approximations of intensities.

Keywords: high-energy density physics, thermal radiative transfer, Boltzmann equation,
reduced-order modeling, nonlinear PDEs, proper orthogonal decomposition, Galerkin
projection, multilevel methods

1. Introduction

In this paper, we develop reduced order models (ROMs) for the basic thermal radiative
transfer (TRT) problem that neglects material motion, scattering and heat conduction.
Problems in 1D slab geometry are considered. The TRT problem is defined by the time-
dependent multigroup Boltzmann transport equation (BTE) given by

1

c

∂Ig
∂t

(x, µ, t) + µ
∂Ig
∂x

(x, µ, t) + κg(T )Ig(x, µ, t) = 2πκg(T )Bg(T ) (1)

x ∈ [0, X], µ ∈ [−1, 1], g = 1, . . . , Ng, t ∈ [0, tend],

Ig|µ>0
x=0

= I in+
g , Ig| µ<0

x=X
= I in−

g , Ig|t=0 = I0
g , (2)

and the material energy balance (MEB) equation

∂ε(T )

∂t
=

Ng∑
g=1

κg(T )
(∫ 1

−1

Ig(x, µ, t)dµ− 4πBg(T )
)
, T |t=0 = T0. (3)
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Here Ig is the group specific photon intensity; x is the spatial position; µ is the direction
cosine of particle motion; g is the index of photon frequency group; Ng is the number of
frequency groups; t is time; κg is the group material opacity; T is the material temperature;
ε is the material energy density and Bg is the group Planck black-body distribution func-
tion. The BTE describes propagation and absorption of photons in matter, and emission
of photons with the black-body spectrum. The MEB equation models change in material
energy as the result of absorption and emission of photons.

Particle transport problems have high dimensionality; Discretization of the BTE in the
phase space and time results in a problem with a very large number of degrees of freedom
(DoF). This has stimulated active research on the development of ROMs for the BTE and
its related class of problems [1, 2, 3, 4, 5]. In this study, the new ROMs for TRT problems
(1)-(3) are based on the proper orthogonal decomposition (POD) and projection approach
[6, 7, 8]. The POD creates an optimal basis to represent dynamics of a system based on a set
of collected data [9]. Specifically, the reduced basis for a Galerkin expansion of intensities
over the phase space is generated by the POD of a collection of vectors of numerical transport
solutions over time intervals of the TRT problem. The BTE is projected onto this basis.
The POD-Galerkin projected BTE can be viewed as a discretization scheme based on a
set of problem-specific global basis functions. The projected BTE is then coupled with
the multilevel nonlinear system of governing moment equations consisting of (i) low-order
quasidiffusion (aka VEF) equations for the group and total radiation energy densities and
fluxes and (ii) MEB equation. The moment equations are derived by a nonlinear projection
of the BTE (Eq. (1)) using exact closures by means of quasidiffusion (Eddington) factors.
The POD-Galerkin expansion of intensities is used to compute the quasidiffusion (QD)
factors.

The reminder of the paper is organized as follows. In Sec. 2.1 POD-Galerkin projection
of the BTE is formulated. In Sec. 2.2 the ROM based on multilevel low-order QD equations
is described. Numerical results are presented in Sec. 3. We conclude with a brief discussion
in Sec. 4.

2. Reduced-Order Model for TRT

2.1. POD-Galerkin Projection of BTE

To discretize the BTE (1) we apply (i) the method of discrete ordinates (MDO) for the
angular variable, (ii) the backward Euler (BE) scheme for time integration, and (iii) the
simple corner-balance (SCB) method for approximation in space [10] to obtain

1

c∆tn
(
In − In−1

)
+ LhIn +Knh(T )In = Qn(T ) , (4)

where n is the time step index, In = ((In1 )> . . . (InNg)
>)> ∈ RD is the solution vector at

t = tn, Ing ∈ R2NxNµ is the vector of group intensities, D = 2NxNµNg is the number of DoF
in the phase space, Nx is the number of spatial mesh cells, Nµ is the number of discrete
angular directions, Lh and Kh are the discrete operators that define approximation by the
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MDO and the SCB scheme, Qn(T ) is the vector of the right-hand side, ∆tn is the nth time
step.

The numerical solution of the discretized BTE (4) on a given phase-space grid is used to
form a database matrix A = [I1, . . . , INt ] ∈ RD×Nt of the solution snapshots computed over
Nt time steps. The database A is used to form a POD basis {u`}r`=1 with r � D that gives
an optimal approximation of A and solves the following optimization problem [11]:

min
u1,...,ur

Nt∑
n=1

∆tn
∥∥∥∥In − r∑

`=1

〈In,u`〉Wu`

∥∥∥∥2

W

, (5)

where the norm ‖ · ‖2
W is defined by the spatial and angular discretization of the BTE. The

weighted inner product specific to the SCB and MDO discretization is given by
〈
u`,u`′

〉
W

=

u>` Wu`′ with

W =

Ng⊕
g=1

Nµ⊕
m=1

wmŴx, W ∈ RD×D . (6)

Here wm are the angular quadrature weights, and Ŵx =
⊕Nx

i=1
∆xi

2
I, where I ∈ R2×2 is the

identity matrix. We form the weighted data matrix

Â = W1/2AD1/2 with D = diag(∆t1, . . . ,∆tNt) (7)

and find its singular value decomposition (SVD) to get

Â = ÛΣ̂V̂> , (8)

where Û = [û1, . . . , ûd] ∈ RD×d holds the left singular vectors of Â in its columns, V̂ ∈ RNt×d

is the matrix of the right singular vectors, Σ̂ = diag(σ1, . . . , σd) ∈ Rd×d is the matrix of
singular values, d = min(D,Nt) is the rank of Â. The POD basis U = [u1, . . . ,ud] ∈ RD×d

satisfying Eq. (5) is given by
U = W−1/2Û . (9)

We now formulate Galerkin ansatz expanding the intensities in the POD basis (9) [8, 11]

Iur (t
n) =

r∑
`=1

λn`u`, r ≤ d. (10)

The discretized transport equation (4) is projected onto the POD basis to derive the POD-
Galerkin (POD-G) projected BTE (` = 1, . . . , r) given by

1

c∆tn
(
λn` − λn−1

`

)
+

r∑
`′=1

λn`′
〈
u`,Lhu`′

〉
W

+
r∑

`′=1

λn`′
〈
u`,Knh(T )u`′

〉
W

=
〈
u`,Q

n(T )
〉
W
, (11)

where it is taken into account that
〈
u`′ ,u`

〉
W

= δ`,`′ . The POD basis is a global one. This
yields a non-sparse system of equations for the coefficients λn` at t = tn. However, it will
be shown below that the ROMs based on the POD-G projected BTE (11) are accurate for
r � D.
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2.2. ROM Based on Multilevel Low-Order QD Equations

The system of equations of the multilevel QD (MLQD) method for the TRT problem
(1)-(3) is derived by a nonlinear projection in angular and frequency (photon energy) spaces.
It is defined by the following low-order equations [12, 13, 14]:

1. The multigroup low-order QD (LOQD) equations for the angular moments given by

∂Eg
∂t

+
∂Fg
∂x

+ cκg(T )Eg = 4πκg(T )Bg(T ) , (12a)

1

c

∂Fg
∂t

+ c
∂

∂x

(
fg[I]Eg

)
+ κg(T )Fg = 0 , (12b)

where Eg = 1
c

∫ 1

−1
Igdµ is the group radiation energy density, Fg =

∫ 1

−1
µIgdµ is the

group radiation flux, and

fg
[
I
]

=

∫ 1

−1

µ2Igdµ

/∫ 1

−1

Igdµ (13)

is the group QD (Eddington) factor that provides closure of the BTE and multigroup
LOQD equations. This closure is exact when fg is defined by the solution of the BTE
(1) according to the QD (VEF) method [12, 15].

2. The effective grey LOQD equations for the total radiation energy density E =
∑Ng

g=1Eg

and the total flux F =
∑Ng

g=1 Fg are given by

∂E

∂t
+
∂F

∂x
+ cκ̄EE = cκ̄BaRT 4 , (14a)

1

c

∂F

∂t
+ c

∂(f̄
[
I
]
E)

∂x
+ κ̄RF + η̄E = 0 , (14b)

where the grey coefficients are

κ̄E =

∑Ng
g=1 κgEg∑Ng
g=1Eg

, κ̄B =

∑Ng
g=1 κgBg∑Ng
g=1Bg

, κ̄R =

∑Ng
g=1 κg|Fg|∑Ng
g=1 |Fg|

,

f̄ =

∑Ng
g=1 fgEg∑Ng
g=1Eg

, η̄ =

∑Ng
g=1(κg − κ̄R)Fg∑Ng

g=1Eg
.

The grey LOQD equations are coupled with the MEB equation that is cast in grey form for
the total energy density

∂ε(T )

∂t
= c
(
κ̄EE − κ̄BaRT 4

)
. (15)

The new ROM for TRT combines the POD-G projected BTE with nonlinear projection
in angular variable and photon energy via the hierarchy of low-order QD equations for
moments of the intensity. It is defined by the following set of equations:
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• the POD-G projected BTE (Eq. (11)) the solution of which gives compressed repre-
sentation of the intensities in the phase space,

• the multigroup LOQD equations (Eq. (12)), where the QD factors are defined by the
POD-G expansion of intensities of rank r and hence

fug = fg
[
Iur
]
, (16)

• the effective grey LOQD equations (Eq. (14)) and the MEB equation in the grey form
(Eq. (15)).

The QD factor fug defines an approximate closure for the group LOQD equations providing
further data compression of intensities and the next level of reduction of dimensionality for
the TRT problem. Hereafter we refer to this ROM as the QD-PODG model, whose iterative
algorithm for solving TRT problems is outlined in Algorithm 1. Temporal discretization
of the LOQD and MEB equations (Eqs. (12), (14), and (15)) is based on the BE time
integration method. The multigroup LOQD equations are discretized in space by means of
a second-order finite volume (FV) method [16]. The spatial discretization of the grey LOQD
equations is algebraically consistent with the discretized multigroup LOQD equations.

The coefficients of the POD-G projected BTE explicitly depend on T through group
opacities and the Planckian emission term. This makes Eq. (11) an integral part of the
nonlinear multilevel system of LOQD equations by means of which they are coupled to
the MEB equation. This feature allows these equations to be used in the development of
parameterized ROMs for TRT. One can generate the POD-G basis {u`}r`=1 for a base case
TRT problem and use the QD-PODG model with this basis to solve TRT problems with
different parameters, for example, a perturbed spectrum of incoming radiation.

3. Numerical Results

To analyze the accuracy of the QD-PODG model, we use the problem based on the well-
known Fleck-Cummings (F-C) test [17]. A 1D slab of one material is defined as 6 cm thick

(X = 6). The material spectral opacity is given by κν = 27
(hν)3

(
1− e− hν

kT

)
. The left boundary

has incoming radiation with black-body spectrum Bν at temperature kTin = 1 keV and the
right boundary is vacuum. The initial temperature of the slab is kT0 = 1 eV and the initial
radiation distribution is given by the black-body spectrum at T0. The material energy
density is a linear function of temperature ε = cνT , where cν = 0.5917aRT

3
in. The time

interval of the problem is 0 ≤ t ≤ 6 ns. A uniform time step is used ∆t = 2× 10−2 ns and
hence there are 300 time steps (Nt = 300). The spatial mesh consists of a uniform Nx = 60
cells with width ∆x = 0.1 cm. The angular mesh has 8 discrete directions (Nµ = 8). The
double S4 Gauss-Legendre quadrature set is used. We define Ng = 17 energy groups. The
parameters of convergence criteria for temperature and energy density are εT = εE = 10−12,
respectively.

The full-order model (FOM) for this TRT problem is formulated as the MLQD method
where the BTE and low-order QD equations are discretized as described above on the given

5



while tn ≤ tend do
n = n+ 1
T (0) = T n−1

while ‖T (k) − T (k−1)‖ > εT‖T (k)‖, ‖E(k) − E(k−1)‖ > εE‖E(k)‖ do
k = k + 1

Update κg, Bg using T (k−1)

Solve POD-G projected BTE (Eq. (11)) given {u`}r`=1, T
(k−1) to compute

{λ(k)
` }r`=1

Compute I
u(k)
r =

∑r
`=1 λ

(k)
` u`

Compute f
u(k)
g = fg

[
I
u(k)
r

]
while ‖T (k,s) − T (k,s−1)‖ > εT‖T (k,s)‖, ‖E(k,s) − E(k,s−1)‖ > εE‖E(k,s)‖ do

s = s+ 1

Update κg, Bg using T (k,s−1)

Solve Eqs. (12) given f
u,(k)
g to compute E

(k,s)
g , F

(k,s)
g

Compute grey coefficients κ̄(k,s)
E , κ̄(k,s)

B , κ̄(k,s)
R , f̄ (k,s), η̄(k,s)

Solve Eqs. (14) and (15) to compute E(k,s), F (k,s), T (k,s)

end

T (k) ← T (k,s)

end

T n ← T (k), λn` ← λ
(k)
`

end
Algorithm 1: The algorithm of the QD-PODG model for solving TRT problems

grid in phase space and time. The number of DoF of In at each instant of time tn is
D = 1.632× 104. The number of DoF in the phase space and time for this FOM is equal to
DNt = 4.896×106. The solution to the F-C test evolves in three distinct temporal stages: (i)
rapid wave formation, (ii) wave propagation, and (iii) slow continual heating of the domain
to steady state. A separate database is constructed by the FOM for each of these stages,
whose temporal ranges are the following: t ∈ [0, 0.3 ns] for i = 1, t ∈ (0.3, 1.2 ns] for i = 2,
t ∈ (1.2, 6 ns] for i = 3.

The resulting database matrices that hold the set of discrete intensities for each of the
three stages of the F-C test we denote by Ai ∈ RD×Nt,i , i = 1, 2, 3. The columns of each
database are snapshots of the solution at Nt,1, Nt,2, Nt,3 instants of time, respectively, ordered
chronologically. The full ranks di of Ai are equal to d1 = Nt,1 = 15, d2 = Nt,2 = 45, d3 =
Nt,3 = 240 respectively. The singular values (σ`) of each of the three databases are depicted
in Figure 1. The first database shows a slow rate of decrease in magnitude of its singular
values over the entire range, whereas the singular values of the other two databases first
experience rapid decrease followed by a plateau where the change in their magnitudes slows
significantly. From the matrices Ai, POD bases {ui,`}ri`=1, i = 1, 2, 3 are calculated for each
of these time intervals.
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(b) A2 (0.3 < t ≤ 1.2 ns)

4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 01
1 0 - 1 3
1 0 - 1 1
1 0 - 9
1 0 - 7
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1 0 - 1
1 0 1
1 0 3

σ l

S i n g u l a r  V a l u e  I n d e x  ( l )

(c) A3 (1.2 < t ≤ 6 ns)

Figure 1: Singular values of the database matrices of intensities over three time subintervals of the problem

We now solve the F-C test with the QD-PODG model by expanding I with each of our
three POD bases based on the time frames they were generated for (e.g. we expand with
{u1,`}r1`=1 while 0 ≤ t ≤ 0.3 ns). The ranks (r1, r2, r3) of the expansion (10) are determined
as the values that satisfy the following criterion [6]( di∑

`=ri+1

σ2
`

/ di∑
`=1

σ2
`

) 1
2

< ε, for Ai , i = 1, 2, 3, (17)

given some desired ε. The ranks found for ε ∈ [10−5, 10−16] are shown in Figure 2. The POD
bases for A1 and A2 reach full rank (r1 = 15, r2 = 45) at ε = 10−6 and ε = 10−8, respectively.
Full-rank is not found for the basis of A3 (r3 = 240) until ε = 10−16. This behavior
is expected since compared to A3, the full ranks of A1 and A2 are relatively small. The
singular values of both A1 and A2 also occupy a smaller range than for A3. Another notable
behavior is that r3 < r2 for ε < 10−8, indicating that the solution contained in the time range
over which A2 was generated is the most difficult to represent with few POD modes. This is
to be expected given that A2 accounts for the solution during propagation of the radiation
wave from the left boundary to the right, which is known to be a difficult phenomena for
the POD to represent with low rank [18, 19]. Let us note here that the rank of expansion
for each timeframe in the F-C test is exactly the size of the linear system that solves for the
coefficients λ` (Eq. (11)). This means that when using ε = 10−5 for instance, the largest
linear system to solve in place of the BTE is a dense r × r system with r = 14, which is of
significantly lower dimensionality than the original BTE (r = 14� D = 1.632× 104).

The errors of the QD-PODG model relative to the FOM solution on the F-C test in
the 2-norm are displayed in Figure 3 for material temperature and radiation energy density
vs. time. Each unique curve shows the relative error of the ROM solution for a specific
value of ε, ranging from 10−5 to 10−16. Note that we use the FOM solution as the reference
to compute errors against, to determine how the ROM solution converges to its training
data. The MLQD discrete solution will converge to the multigroup TRT solution in the
limit Nx, Nµ, Nt →∞ and so we can postulate that if the solution of the QD-PODG model
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Figure 2: Rank of expansion for each database corresponding to different ε
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(b) Radiation Energy Density

Figure 3: Relative errors of the QD-PODG model mg-P1 and mgFLD ROMs compared to the FOM solution
in the 2-norm vs. time

converges to the discrete FOM solution then it will too converge to the continuous solution
given a database generated on a fine-enough grid.

Figure 3 shows that as ε decreases, the relative error of the QD-PODG model trends
downward as well. Upon inspection, one can see that the ROM with ε = 10−6, 10−7 is
exceptionally accurate for t ≤ 0.3 ns. This comes from the full-rank basis representation of
A1 that occurs for all ε < 10−5, as was shown in Figure 2. Similarly, the high accuracy for
t ≤ 1.2 while using ε < 10−7 follows from the fact that the full-rank basis representation of
A2 is used for ε < 10−7. Considering overall accuracy, even with very low-rank (ε = 10−5)
the QD-PODG model maintains a relative error in both material temperature and radiation
energy density below 10−5. Figure 4 depicts the solution to the F-C test generated with the
QD-PODG model, using the criterion from equation (17) as ε = 10−5. This ROM can be
compared to the relative errors in the 2-norm of the popular multigroup P1 (mg-P1) and
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Figure 4: The solution to the F-C test on the given grid in phase space and time generated by the QD-PODG
model with ε = 10−5.
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Figure 5: Relative errors of the QD-PODG model compared to the FOM solution in the 2-norm vs. ε

multigroup flux-limited diffusion (mg-FLD) ROMs [20] found for the same test problem, also
shown in Figure 3. The results show that even with ε = 10−5 the QD-PODG model yields
a far more accurate solution than these other ROMs by roughly 3-4 orders of magnitude.
Let us also take note that when using all POD modes (ε = 10−16) the QD-PODG model
converges to the FOM solution within the iterative convergence bounds with the exception
of the radiation energy density while t < 0.5 ns. This comes from higher errors found at
the radiation wavefront during formation, which is a difficult process to capture given how
rapidly it progresses and can be prone to larger numerical errors than other parts of the
solution.

Similarly to Figure 3, Figure 5 also displays the relative error in the solution of the F-C
test obtained by the QD-PODG ROM compared to the FOM solution in the 2-norm, but
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plotted in a unique format. In Figure 5 each curve corresponds to a specific instant of time,
showing how the error of the QD-PODG model changes with respect to ε when time is held
static. This plot clearly demonstrates the convergence behavior of the ROM solution as ε
decreases to zero.

4. Conclusions

In this paper, we presented a new ROM for high-energy density TRT problems. The
proposed methodology is based on the nonlinear projection approach and Galerkin pro-
jection combined with the POD. The developed ROM efficiently reduces dimensionality of
TRT problems and was shown capable of producing solutions with various levels of fidelity.
The accuracy varies based on the rank of the POD basis used to project the BTE, and the
ROM solution converges to the FOM solution as this rank is increased. As such the devel-
oped ROMs enable the use of practical and efficient simulations by significantly reducing
dimensionality of the problem while maintaining sufficient accuracy. The ROMs presented
here also possess the capability for parameterization, which is an avenue the authors will be
pursuing in the future.

The promising performance of the QD-PODG model motivates further research on this
approach. An extension to 2D geometry is the next logical step. To make the method robust
for such extensions, a desirable feature is to enforce positivity of the expanded intensities.
Secondly, work must be done towards generation of enhanced POD for the problems at
hand; one technique would be to use symmetry-reduction methods [18, 19] which are known
to improve basis generation for traveling waves.
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